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Random Process Model of Rough Surfaces'

"Rough surfaces are modeled as two-dimensional, isotropic, Gaussian random pro-
cesses, and analyzed with the techniques of random process theory. Such surface
statistics as the distribution of summit heights, the density of summits, the mean surface

gradient, and the mean curvature of summits are related to the power spectral density
of a profile of the surface. A detailed comparison is made of the statistics of the sur-
Jace and those of the profile, and serious differences are found in the distributions of

heights of maxima and in the mean gradients.

Techniques for analyzing profiles of

random surfaces to obtain the parameters necessary for the analysis of the surface are
discussed. Extensions of the theory to nonisotropic Gaussian surfaces are indicated.

1 Introduction

TH}E characterization of the topography of solid sur-
faces is of interest in the study of a number of interfacial phe-
nomena such as friction and wear, and electrical and -thermal
contact resistance.

A very general typology of solid surfaces is shown in Fig. 1.
Surfaces that are deterministic may be studied by relatively
simple analytical and empirical methods; their detailed char-
acterization is straightforward. However, many engineering sur-
faces are random; and it is these that have been subjected to a
great deal of study in the past decade.

“In this paper, attention is concentrated on random, isotropic,
Gaussian surfaces, although extensions of the theory to noniso-
tropic surfaces are indicated. It is clear [1]2 that many surfaces
are non-Gaussian; but it is equally clear that many surfaces are
Gaussian [1]. Moreover, a study of Gaussian surfaces should
provide a good preparatory background for the study of non-
Gaussian surfaces. '

Our approach is to use the techniques of random process
theory. The height of a rough surface may be considered to be
a two-dimensional random variable, with the Cartesian coordi-
nates in a reference surface being the independent variables.
This approach was first used by Longuet-Higgins in 1957 in two
outstanding studies of random ocean surfaces [2,3]. Some of
the results reported in the following sections are from Longuet-
Higgins’ work, and, in these instances, we shall refer the reader
to his work for proofs of statements. .

A brief survey of the literature on surface mechanics has re-
vealed a number of attempts to analyze solid surfaces with the
techniques of random processes [4-6]. All these analyses, how-
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ever, rest on two assumptions, both of which are shown to be
unnecessary in the present work: (1) The statistics of the sur-
face are the same as the statistics of a profile of the surface, and
(2) the asperities have spherical caps. The first assumption is’
found in the following pages to lead to serious error. It is
necessary to distinguish a peak on a profile from a summit on
the surface, to use the terminology of Williamson and Hunt [7].
A profile will more often than not pass over the shoulder of an
asperity on the surface instead of its summit. The shoulder will,
nevertheless, appear as a peak on the profile, though one of re-
duced height. Thus the profile indicates the presence of far
fewer high peaks than actually exist on the surface. A similar
error occurs in the determination of the mean surface gradient;
it is not the same as the mean slope on a profile. Both of the
foregoing assumptions are dropped in the present work.

In Section 2, some of the relevant results of random process
theory are summarized. Further details may be found in the
work of Longuet-Higgins [2, 3]. .In Section 3, various results
are obtained for random, isotropic, Gaussian surfaces. In
Section 4, the sampling of such surfaces by profilometry is
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analyzed. Results are given for the statistics of profiles, and a

comparison is made of surface and profile statistics. In addition, '

_a very simple technique is described for obtaining all the param-
eters necessary for the analysis of Section 3. Some conclusions
are presented in Section 6, together with indications of extensions
of the theory to nonisotropic Gaussian surfaces.

2 The Characterization of Random Processes [2]

The Autocorrelation Function. Consider a rough surface whose
height above a plane reference surface is z(z, y), where z is a
random variable and z, y are Cartesian coordinates in the refer-
ence surface, Fig. 2. The reference surface may be taken to be
the mean plane of the rough surface. We assume that the surface
is homogeneous—that is, its statistical description is invariant
with respect to translation along the surface. The autocorrela-
tion function is then defined to be

Le
SR I

X z(z + 2, y1 + y)dzdy,. (1)

If the surface is isotropic, R depends only on r = (22 + 2)'/2,
and not on the polar angle § = tan~'(y/z).
The Power Speciral Density (PSD). The Fourier transform of R

is called the power spectral density:

R(z,y) =

1
Dk, k,) = ypr ffR(x, y) exp [—i(zk, + vk, )dzdy. (2)
The inverse Fourier relation holds:
R(z, y) = f f ®(k,, k,) exp [i(zk, + yk,)dk.dk,.  (3)

k, and k, are the components of a wave-vector k. From equa-
tion (1), we see that R(0, 0) is o2, where ¢ is the rms roughness,
or the standard deviation of the roughness. It then follows from

equation (3) that
o2 = ff Dk, k,)dk,dk,. (4)

Equation (4) indicates that ®(k,, k,) is & decomposition of ¢?
(the power in electrical terminology, when the random variable
is a current) into contributions from various spectral components,
which are waves with wave-number k. The wavelength of these
waves is

= 21r/lk|, (5)
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Fig. 3 Generation of the PSD of the 0, profile from the PSD of the surface

and their direction is along
0 = tan—(k,/k,). (6)

For isotropic surfaces, ® depends only on k = |k[.
The Autocorrelation and PSD for a Surface Profile. If a profile of

the surface be taken in the plane 8 = 6, the height, z of the pro-_
file is a function only of the distance r from the origin along the

profile. The autocorrelation and the PSD for the profile are
defined to be
1 L '
Rey(r) = le 1 oL z(rl)z(h + 7)dry, (7)
and
7 1 ° 3.1,
o, (k') = o Ro,(r) exp (—ik'r)dr. (8)

Relation Between Surface and Profile PSD’s. Longuet-Higgins [2]
shows that the following relation holds between ® and Pg,:

Doy (k') = f q)(kz) ky)dli (9)

where

1= (k2 + k2 — k)2 (10)

The physical meaning of equation (9) may be clarified with the
help of Fig. 3. The point P in the wave-number plane has co-:
It represents waves with wave-

ordinates (k' sin 6y, k&’ cos ).
number k' along the profile. The line NPR, perpendicular to
0P, is the locus of all wave numbers whose projection on OP is
k’. Thus, any wave with a wave vector lying on NPR appears
to have a wave-number k' in a section parallel to OP. The line
NPR is the path of integration in equation (9).

Moments of the PSD. The moments ., of ® are defined as

follows:
= f f ® k., k, )k, 7k 2dk, dk,,. (11)

It follows from equation (4) that
mep = o (12)

The moment mpg, of the profile is defined as follows:

Mgy = f“’ Dy, (k) (k" )dk’. (13)

—

The following relation exists between ‘the My, and the mag, [2]:
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“Mingy = Mno €05"h + Ci"Mn_1,1 cos™ 16, sin 6,

+ Comnzacos” 2 Gy sin2 6y + . ...+ mn sin® @, ~ (14)

where
C,*» = nl/m(n — m)l. (15)

Equation (14) may be derived by combining equations (9), (11),
and (13). When the surface is isotropic, the following relations
may be derived from equations (11) and (14):

Moy = Mgz = Mg; M = Mz = m31ﬁ= 0;
(16)

Moo = Mo - 3Mmaz = Mag = M = My,

In equation (16), the subscript 6, for the moments of the profile
PSD is dropped, since isotropy implies that the profile statistics
are independent of the direction 6, of the profile.

The Central Limit Theorem. Let £; . . . £, be n quantities, each of
which is the sum of a large number of independent variables with
zero expectation. Then, under very general conditions [8], the
joint probability density of the £, is Gaussian in n dimensions:

P E) = @) T A Vrexp {—IM EE),  (T)

where the matrix M is given by

M = (N)™ (18)
and ) .
N=| && , o 9)
Ebr o £:2
and
A = Det.(Ny). 20)

The element EZ of the matrix is defined by

=S ST et pe)der . . .

de, (21)

e)ple) ...

where E is the probability space of the independent random
variables €; on which the £; depend.

3 The Statistics of Random, Isotropic, Gaussian Surfaces

\) Assume that the surface height z(z, y) may be represented by

the infinite sum

2(z,y) = Y, C, cos (tk,, + yhkyu + €,). (22)
n
It is assumed in equation (22) that there are an infinite number
of wave-vectors (k,,, k,,) in any area dk,dk,. e, is a random
phase, with a uniform probability of lying in the range (0, 27).
The coefficients C, are related to the PSD & by
Q(k;r;) ky)dkxdky - 1/2 Z Cn2: (23)
Ak
the summation being over all n such that (k,,, k,,) lies in the area
dk.dk, around (k,, k,). From equations (11) and (23), we see

that
me = 02 = 1/, ZCJ. (24)
alln
Similarly, we have
mpq = 1/2 Z kznpkynq0n2~ (25)
alln

Define the variables & . . . & as follows:
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£ =2 £ = d%/oxt
£ = dz/ox £ = d%/omdy (26) .
Es= 0200y o= O%/oyt

The variables & . . . & satisfy the requirements of the central
limit theorem, and their joint probability density is given by
equation (17). Then the matrix N,; of equation (19) is found

to be
mw 0 0 —Mgo — M1 ~ — Moz
0- Mmooy Mu 0 0 0
) 0 mu Mo 0 0 0 ‘
(Nij? - —mpn 0 O Mo  Ma Maz 27
—my 0 0 may Moz mis
—mg; 0 0 Moz mis mm

As an example of how the elements of N,; are computed consider
the element £1£4. From equations (22) and (26) we have

Bbo= — 2 Ck,? 008t @hon + Thyn 4 6). (28)

alln

) .
For any one value of n, the average on the right-hand side of -

equation (28) is taken over ¢,, and we have, using equation (25),

%l_f; = —'1/2 Z ankznz = —Mao. (29)

“alln

When the surface is isotropic, the matrix M ; of equation (18) is

_found, using equation (16), to be

— —

2my 3m. 3my
-— 0 0 — 0
Al 2A1 2A‘
1
0 — 0 0 0 0
mse
1
0o 0 — 0 0 0
me
M ij = . » (30)
§'rl_’Lz 0 0 94, 0 3A;
2A1 4miA, 4m4A1
0o 0 O 0 3 0
N
3?nz 3A3 gAz
— 0 0 - 0
2A1 47n4A1 4m4A1
where
= (2moms — 3ms?), (31)
Ar = (mome — ma?), (32)
and
= (moms — 3ms?). (33)

The determinant A of N; is found to be
A = 34 (mame)2(2mems — 3my?). (34)

Thus the joint probability distribution of the variables & . . . &
is found from equation (17) to be

pér. .. &) = (@m)SA~ 2 exp (—1/2X), (35)
where A is given by equation (34) and ’
2m 9A 3
X"'Z'1‘4512+4 z &2+ &) + — &2
my
3m2 3As

+ - 51(54 + &) — &Ee + (Ez + &2). (36)
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We shall now obtain the following statistics of the surface:

1 the proba.bilii}y distribution for summit heights

2 the spatial density of summits

3 the probability distribution for the mean curvature of the
summits. '

Distribution of Summit Heights. The requirements for some point
(z, y) in an area dA = dzdy to be a summit (i.e., a maximum)
are that, at (z, y),

£2=ES=0

} (37)
£<0, £&<0, E&&-—&*2>0.

The probability that the variables ; at (z, y) will lie in the range
(E], £1 -,)f- dfl) is p(fl e fa)dsl “ee dgs. The increments dsz and
d§; that take place in an area dA are given by

(& £3)
o(z, y)
where the Jacobian has the value

o(by &) _ b Ok Of Ok _

—_ . — . 2

d(r,y) Oz oy Oy oz

d&dés =

da,’ (38)

= L& — &2 (39)

The point (z,y) will be a summit of height between £ and
& + dbif & = & = 0, d& and d&; satisfy equation (38) and
&4, &, & take on arbitrary values subject to equation (37). Thus,
if Paum(£1) is the probability distribution for summits of height
&, the probability of having a summit in the area dA with height
in’:the range (&, & + d&y) is

Poun(£1)dAdE = d&

X fff p(£1, 0,0, &, &, £6)dEdEsdEdEsdss.  (40)
v

- The domain of integration V is defined by
£.<0, &<0O, Eds — E2 2> 0. (41)

Using equations (38) and (39) in equation (40), and substituting
for p(§: . . . &) from equation (35), we obtain

4G1 Al
Psum(gl) = expiz r;’;il//z )ffflglg5 - £5zl exp

1 94, 2 2 2 g 3m, :
{— /z[ X (& +£6)+m4£5 + A, §1(6 + &)

4M4A1
2m A 54&:” dédEdEs.  (42)
Define

) 12
(&, tay 1) = (i) [Va(80 + &), &5, 2/a(Es — &o)]

4.
and 43)

b* = &/me'/? = £i/a.

Then, using the transformation Peum(£1*) = Psum(&)[b&/b&*l,
equation (43) may be written

PR CAY A
Psum(é ) - ( ) 3(27[')3

ma

X ffflt;” — 12 — t32| exp {—1/2 [Cit® + to?
VI

+ ts2 +Coti*) }dtdtadts, (44)

exp [—CiE*]

where
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= mems/ms?
C = a/Qa — 3)
. (45)
and ‘
C: = Ci(12/a)2.

The domain of integration V'’ is defined by
h<O0
(46)
tzz + tsz S tlz.

The probability density for summit heights, psum is obtained by
dividing Psuym by Dsum, the density of summits: :

psum(g*) = P(Esum*)/l)sum; (47)

where

Dyum = f Poum(§*)dg*. (48)

—

The integrals in equations (44) and (48) may be evaluated
analytically to yield

1 my )
Dsum =6‘l|'\/3 ‘ } (49)’

This result agrees with the expression given by Longuet-Higgins
[3], which was derived by a slightly different method.

Substituting the expression for Dem into equation (47), we
obtain

3 - Y2
) = 32 |- [222 =3 |
m

a2
3;/f7r e~ (1 4 erf B)(£% — 1)
— o 2
+ +2m [3(—0[_—1)] exp { — [(af*?)/2(a — D]}

X (1 + erf 'y)}, (50)

3 .,
B = [2—(501— 3)] ¢

where

and N (51)

_ [__:“__:l/ .
Y=|2a - nea-3] ¢

The probability density psum(&*) is shown in Fig. 4 for a range
of values of o. Longuet-Higgins [2] has shown that & > 1.5
for a random, isotropic surface. Thus no values of « lower than
1.5 appear in Fig. 4. It may be seen that as a decreases to 1.5,
the probability of a high peak increases. The parameter « is

" related to the breadth of the surface PSD. A broad spectrum

is one that has waves with a large range of wavelengths; a narrow
spectrum has waves of approximately equal wavelength. As
o — 1.5, the spectrum gets narrower; and as a — o, it gets
broader.

The two limiting forms of Psum for @ — 1.5 and o — « are:

1 Lima— 1.6

2v8 1w —pHe

VS eV gk ] 4 e~ E) EF > 0
Paum(£*) = { V2T (52)

0, £ <0.
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Qsum ~ f* sum(E*)dg*
g* =
a=1.5 2 3 4 5 10 -
O 0‘0. 0.0 .0129 .0601 .1026 .1363 .2327 .5

.25 .0001 .0306 .1103 ‘.1686 .2118 .3263 .5987

.50 | .0037 | .o706 |.1739 | .2u46 | .2943 | .u187 | .6915

.75 .0237 .1296 L2696 .3496 L4031 .5’296 L7733
1.00 .0785 L2281 .3701 L4521 .5050 L6251 L8413
1.25 L1787 .3381 .l4955 5724 .6205 .7251 .8943
1.50 .3176 Jh794 .6052 L6724 L7134 .8000 .9332
1.75 Lb74s .6030 .7199 L7725 .8040 .8689 .9599
2.00 | .6254 | .7293 | .8042 | .8435 | .8668 | .9138 | .9772
2.25 7525 | .8187 | .8785 | .gouu | .9196 | .ou98 | .9878
2.50 | .8482 | .8936 | .9247 | .9u14 | .9512 | .9704 | .9938
2.75 | .9134 | .9375 | .9594 | .9687 | .9742 | 9848 | .9970
3.00 | .9539 | .9625 | .9778 | .9830 | .9861 | .9920 | .9987
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Fig. 4 Probability density for summit heights

Table 1 Cumulative probability distribution for summit heights

2 Lima— o

1
*) L Ve
psum(g ) Vo € (53)
Thus, when a — o, the summit heights have a Gaussian dis-
tribution. When a — 1.5, the distribution of summit heights
for £* > 2 may be written

1/,
Peoum (§* > 2) = (;) (£*2 — 1)e V" a =15 (54)

The most remarkable thing about the expression for peum(£*)
is that it depends only on the parameter a, which may be ob-
tained from a surface profile, as explained in Section 4.

An interesting observation that may be made about the ex-
pected density of summits Deum (#/unit area), equation (49),
is that when the surface PSD is flat up to fairly high wave-
numbers (i.e., small wavelengths), Deum Will be very large. This
is because one effect of the small-wavelength components is to
cause large clusters of “mini-summits” of small amplitude and
wavelength to appear around & “maxi-summit’ of large ampli-
tude and wavelength. If, however, one is interested only in
the maxi-summits, their density may be obtained by filtering out
the high wave-number content of the surface PSD. This causes
ma to decrease faster than m,, and consequently causes a decrease
in Deym.

A further quantity of interest is the cumulative density of
summits geum(£*), which indicates the fraction of all summits
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that are expected to lie below £*:

Qsum (E*) = f Dsum (E*)df*' (55)
This function is tabulated in Table 1. It may be seen that as
a — 1.5, the fraction of summits that lie below the +30 level
(i.e., below £* = 3) decreases.

The Mean Summit Curvature. The mean curvature k,, at any
point on a surface is defined as the mean of the principal curva-
tures k; and k; at that point. In addition, the sum of the curva-
tures of a surface at a point along any two orthogonal directions
is equal to the sum of the principal curvatures [9]. Further-
more, the curvatures of a surface at a summit in the z and ¥
directions are —9%/dxz? and —02%/dy% Thus the mean curva-
ture at a summit is
0% 0%

~) ==} Gt ). 60)

1
= 1/3(ks + Kk2) = (bx2 op

Using equation (43), we find

Yy
K, =— ﬁ‘) t (57)
m 3 .

We call ¢; the equivalent mean curvature. The joint probability
distribution for summits with height £,* and equivalent mean

curvature {; is
(”M)

3(2mr)3
X exp { —1/a[Ci(a)ts® + Ce(a)ti£*1}

Psum (El ) tl) = C Ve exp [_015*2]

X f [t2 = 8,2 — t:2] exp { —/alts? + t:2] }dbadts.  (58)

The domain of integration S is defined by
42 > 62 4 ts% (59)

In addition, at a summit we always have t; < 0.
Poum(£:*, 1) may be normalized by dividing by Deum to yield
a probability density:

psum(él*; tl) = Psum(gl*, tl)/Dsum~ (60)
The integral in equation (58) may be evaluated analytically to
give

peam(®®, 1) = Y20 exp (i)

X (2 — 2 + 2e~ "4 exp { —1/a[Ci(a)ta? + Ca(a)uE*]}. (61)

The expected value of the mean curvature for summits of
height &%, k,,(£:*) is found from equation (61):

m\72 9
- (E‘) f tlpsnm (El*; tl)dtl

Bn(E1%) = ; (62)
f psum (El*, tl)dtl
The expression for £,(£*) is found analytically to be
_ Ve Iy(g*) — 2L(§*) + 2I:(E*
Rn(£*) = (73) ) - AE) + B ey
3 L(E*) — 2I(8*) + 21.(&*)
where I, . . . I; are functions of £* and «, given in Appendix 1.

The dimensionless expected mean curvature &,,/+/my is shown
in Fig. 5 for a range of values of . It may be seen that high
peaks always have a larger expected mean curvature (i.e., a
smaller summit radius) than lower peaks. For a = 1.5, K,
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> * ta=1 For further comparisons between the statistics of the surface
. and the statistics of the profile, we present results for (a) the
2. y ) Laeis height distribution of peaks of the profile, (b) the expected value
yy *;0 . of the peak curvature as a function of peak height, and (c) the
lg=o asio L 3 ; é:,’_\‘\ a2 distribution of slopes on the profile.
£ La=5 : Z 28 ‘;0‘ as3- . \\\ Heights of Profile Peaks Cartwright and Longuet-Higgins [11],
I / | ans v = £ 77 ) N La-3 following Rice [12], have shown that the probability density for
s /] e £ g et /1NN DN\ the heights of profile peaks is
2 e e ~ > 02 7/ N \
< Z__ —_— "'/ ;_o—’ L / ’ < )&/: \ \ \\\ )
[ —_— T 4' - ,/ e ;_'z @ =co ( ,I \\ \\ \\\ 6
30 += el 4 02 N4/ T AN Ppeak (E*) = — {exp [—(8*2/252)]
——— 1 _— P § ,'/ / 7 N \\\\‘\ peal v
L — S o /, "/ / \\ ~\\\\ . —
. [ Vpees | ] Meas 7 4 N + VA x e (=1/2 £ + et )}, (7D
Lt \__a =2 o // ’ ,/ 1 \\\\, \\ |
/’ /4/’ 4'// ~I:
o %5 e o NI Fr i s 26 25 .30 where
0 z , E =2/0
=25 ~2.0 1 ! SUMMIT HE|2£T' e*: 32 . 20 25 30 B
Fig. 6 Probability density for heights of peaks on a profile a = mema/ms?
Fig. 5 Expected mean dimensionless curvature of summits ﬁ 8 = [(@ — 1)/al /2]
1 {ma\ ﬂ “and (78)
varies linearly with £*. For very large values of «, however, the Dsero, 0 = o <,,—to> ’ (70)

expected mean curvature is very nearly constant for summits of
all heights. The two limiting cases are:

1 Lima—1456
'Em/\/'”Td = '\/2_/3 E*7

2 Lima— »

g >0 (64)

R/ V/Ms = 8/3/T. (65)

Further fairly elementary results may be derived concerning
the probability distributions of the height of the surface and
the surface gradient.

The Surface Height. The probability density for the surface
height £ is obtained in a straightforward manner from equation
(17) by noting that

]vu 512 Moo o?
and A = ¢2. Thus,
1
- _ _1 2],
(&) o2 exp [—1/a(&1/0)?] (66)
The Surface Gradient. The surface gradient is defined by
¢ =&+ 8 67)

Longuet-Higgins [10] shows that the probability density for { is

p©) = 5 exp (—5/2ma). (68)

The expected value of the gradient is found from equation (68)

© 1/,
{ = f Ep()s = (”—;’”) :
0

4 The Sampling of Random Surfaces

In Section 3, it was shown that a large number of useful sta-
tistics of the surfaces may be found for random, isotropic,
Gaussian surfaces if the parameters mo, ms, and m4 are known.
It was also shown that these parameters are moments of the PSD
of a profile of the surface in an arbitrary direction.

Once a profile of the surface is obtained, the autocorrelation
of the profile may be calculated, using equation (7). The profile
PSD is then calculated, using equation (8). The moments
mo, me, and my4 are obtained by using equation (13).

An ingenious alternative has been described by Longuet-
Higgins [2]. He shows that the densities of zeroes and of ex-
trema (maxima or minima) along a profile are given by

(69)
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— 52\ V2
X = (1 2526) &

The function ppeax(£*) is shown in Fig. 6 for a range of values
of @. It may be shown that for one-dimensional random pro-
cesses, | < @ < ». Thus, § varies from § = 0 when o = 1 to
0 = 1 when @ = . The significance of the parameter « is the
same as for a random surface. Small values of « indicate a

narrow spectrum, and large values of « indicate a broad spectrum.
When the one-dimensional random process is a profile of an iso-

and

1 (m\2
Dextrgma.,o == (‘_‘4> -

™ \Mmz

(71X, ’
The subscript 6 indicates a profile statistic, not anisti‘opy. -
Once a profile is obtained, ¢ = +/my is easily calculated. Then
ms and m4 may be obtained from equations (70) and (71) simply
by counting the number of zeroes and extrema per unit length of

h le: T
the profile tropic, random surface, however, o can only take values greater
me = 720*(Dyero, 0)% (72) than 1.5. '
Figs. 7-9 show a comparison of ppeac(£*) and peum(£*). It
and » may be seen that the profile distorts the surface in such a way
my = 10*(Dyero, 0)*(Dextrema, 0)* (73) as to show far fewer high peaks and far more low peaks than

i actually exist on the surface. The distortion is the greatest
It is worth noting that by this technique, the high wave- when & = 1.5; it becomes zero when a — . The reason for
number content of Py is filtered out if one only counts major '
peaks, valleys, and zero-crossings. Conversely, a low-pass fil-
tered signal will only contain major peaks, valleys, and zero-
crossings. :
The parameter a of equation (45) is

2
a = MMy _ (Dext,rema,o) .

me? Dzero. [}

instrument will travel over the shoulder of an asperity on the
surface, rather than over the summit. A peak will still appear
on the profile, but of a smaller height than the summit being
sampled.

In the limiting cases of & — 1 and @ — =, the following ex-
pressions are obtained for ppeax from equation (77):

O,

(74)

. . : 1 Lima—1
In passing, we may note that the density of peaks (maxima) =

along the profile is, due to symmetry, one-half the number of —*

extrema:
1
Dok = _1 ms /2. 75) Table 2 Cumulative probability distribution for peak heights
peak —
2w \'my
E*
Comparing this with the density of summits on the surface n Yeak = S Ppeak(5¥)dE*
. _ -
Dgum, €quation (49), we have 7 v w=1.0] 1.5 ’ 3 . 5 10 .
Doum =~ 1.2(Dpear)?. (76) E 0.0 | 0.0 | .0956 | .1560 |.2168 | .2558 |.2823 |.3482 | .5
. . .25 .0308| .1738 | .2340 | .3143 | .3568 |.3853 | .4541 | .5987
The question arises as to‘ whet_her'the pa..rameters Mo, Mz, May 50| L1175 | L2662 | .3u3u | w110 | .usus |.ns27 | .she7 | 6015
and a can be obtained in a direct fashion by instrumental analysis .
. . . .75 L2452 .3923 | .4506 |.5236 | .5690 |.5948 | .6552 | .7733
of the output of a profilometer. One technique for doing this, o ; . v | s
. . 1. . . . . . . . .
being developed st Bolt Beranek and Newman Inc., is as follows. 3935 -5105 | 5760 | 6304 | .664T |.6670 | 7388 | .BA13
The signal from the profilometer is passed through a preamplifier, 1.25| .5422| .6410 | .6789 | .T348 | .7617 |.7792 | .8196 | .8943
* low-pass filter with adjustable cutoff frequency, and an ampli- 1.50| .6754 | .7314 [ .7804 |.8115 | .8320 |.8452 | .8757¢| .9332
fier. The rms value is read directly from a quasi-rms meter. A 1.75| .7837| .8335 | .8510 |.8800 | .8938 |.9027 |.9233 | .9599
circuit for determining the zero-level of the signal is used along 2.00| .8648 | .8932 | .9104 |.9235 | .9326 |.9386 |.9522 | .9772
with a comparator and a counter to determine the zero-crossing 2.25| .9204| .9398 | .ou58 | .9571 | .o624 |.9659 | .9738 | 0878
r:;i;ei; (;I‘u:f) ob?u}: (tiht? ra.;cg of extre;na,,%ll:e z:rc;f-irossmg rate 2.50| .9561 | .9656 | .9714 [.9756 | .9787 |.9807 |.9854 |.9938 ]
of the differentiated signal is measured. e cutoff frequency on: 2.75| o712 | 9830 | o846 | .9880 | 0895 |.9905 | .9929 | .9970
_the filter is adjusted according to the nature of the particular
L - . 3.00| .9889|.9910 | .9929 |.9939 | .9947 |.9952 |.9964 | .9987
contact problem being investigated. .
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the distortion is that more often than not, the profile-measuring -
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Fig.7 Comparison of probability densities for peak and summit heights
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Fig. 9 Comparison of probability densities for peak and summit heights

£ exp (—1/8*), £ 20
Presk (§*) = { (79)
- o , & <o
2 Limoa—
1
* = = —1 *2 .
Dpeak (£%) Va3 P (—1/2£*2) (80)
The cumulative probability density for peak heights,
s*
reak (£*) = f Ppeak (§*)dE*, (81)°

is tabulated in Table 2. It is clear from a comparison of the data

Transactions of the ASME



a=15-

<

2.0
IE —a=10
\x —a=5

<

u / L a=a
s
u
«
2 ’ f—-]
e | / =
Lz o 7 == > = —r
R e

L—T 17 _+

92.5 -2.0 =L -1.0 -0.5 L5 2.0 - 25 3.0

0 05 10
PEAK HEIGHT, { = z/0

Fig. 10 Expected value of dimensionless tip curvature of peaks on
a profile j

a=|5

N

Rpeax /VMa

CURVATURE
w

>
////‘ //\——?u/\/r'nT

0.5
1 4

0 -0% o] 0.5 »'0 L5 2.0 25 3.0
PEAK OR SUMMIT HEIGHT, ¢ "= z/0
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in Tables 1 and 2 that there are many more summits above the
430 level than would be indicated by the profile, except when
a— o,

Peak Curvature. In a manner similar to that leading to the
expected mean summit curvature, k,,(£*), equation (63), the ex-
pected value of the profile peak curvature is found to be

Ix + vmeX (1 + erfx)(x* + 0.5)]
[1 4+ x & v (1 + erfx)]

Rpeak (£*) = my'/28~/2 (82)

where 6 and x are as defined in equation (78).

The dimensionless peak curvature Kpesk/+/74 is shown in Fig.

10. Figs. 11-13 show a comparison of Kpeak/+/Ms and &,,//ma.
The distortion of the surface by the profile is again evident, but
is now quite small for &« > 2. For a < 2.5, the profile shows a
larger peak curvature than the true summit curvature. For a >
2.5, the profile peak curvature is less than the summit curvature.

The Profile Slope. Consider a profile taken along the z axis.
The height of the profile is & = 2z and the slope is £ = 0z/0z.
The joint probability density for & and & = z/dz is found from
equation (17) to be

P&, £) = p(EDp(E), (83)

since g—lg = 0. p(&) is found, by the techniques detailed in
Section 3 to be

p (&) = exp [—&2/2m). (84

1
v/ 2mms
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Equation (83) indicates that the probability density for surface
slopes in a given direction is statistically independent of the sur-
face elevation at which the slope is measured. From equation

(84), the expected value of the absolute slope |£:| at any elevation
is ) .

T&] 2\ 1/,£.2 _ (2 1/2. .
|&| = <7r—mz) j; & exp (—1/262/me)dés = ( - ) (85)

Similar comments apply to &, the surface slope in the direction

of the y axis.

A comparison of equations (69) and (85) indicates that the
mean gradient on the surface is always larger than the mean
slope on the profile:

|&| =

{= &

oy
[ R

. (86)

5 Discussion

Whitehouse and Archard [13] have recently provided a de-
tailed discussion of three-point analyses of surface profiles. We
shall briefly examine the connection between their work and
ours. Their theory assumes an autocorrelation function of the
form

R(r) = mg exp (—B|r]), (87)

where (8 is a factor governing the swiftness of decay of the cor-
relation. - Using equation (8), the profile PSD is found to be
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/ )and

I
PEN = 5 B+ b (88)
It may be seen that when f is large, the autocorrelation decays
swiftly, and the PSD is almost flat out to large values of k’'.
We may now attempt to obtain the parameters m; and m,; using
equation (13). Upon introducing equation (88) into equation
(13), however, we find a result that is well-known in the theory
of Markov processes: for a random process with an exponential
autocorrelation function, the mean-square slope (m:) and the
mean-square second derivative (m.) are undefined. This can
be traced directly to the fact that for an exponential autocorrela-
tion function, equation (87), the second and fourth derivatives
are undefined at z = 0. The relation inverse to equation (8) is

R(r) = f S’ exp (ik'r)dk’. (89)

—

Differentiating equation (89) and combining it with equation
(13), we obtain

dzR ® ! ’ !’ |
% =0 == f k') Pk )dE' = —Hma (90)

—

d‘R ®
(@)mo -- f YR = mi (91

—®

Thus, in order for the parameters m; and m4 (and therefore o)
to exist, the autocorrelation function must be smooth at the
origin, in the sense that its second and fourth derivatives exist.
It is entirely likely that R(r) is exponential for large r; however,
extrapolation of this behavior to small values of r is manifestly
unsafe. There is thus an inherent theoretical contradiction in
Whitehouse and Archard’s work: their mathematical model
does not allow slopes and curvatures to exist, though they pro-
ceed to obtain these data from profiles. The reason why this
does not amount to a contradiction in practice is that their
sampling interval is finite; the effect of a finite sampling interval
being to filter out small-wavelength components, and to change
the behavior of the autocorrelation function at the origin.

In order to examine the consequences of this filtering out of
small wavelengths (i.e., large wave-numbers), consider a profile
PSD of the form

- C

_— k| <k
sy = (BT | <k 92)

0, [k’ > ko

Using equation (13), we find
my = ggta.n‘1 (ko/B),
B

my = 2C[ko — B tan™" (ke/B)] (93)

and

Aks

— B%, + f* tan™! (ko/ﬂ);l'
The parameter o can now be obtained from equation (45), and
is found to be ‘
a=tan"14 [ 43 — A 4 tan"* A] /(A — tan™'4)%, (94)
where
A = (ko/B). (95)

It may be seen that « = o as A — o. In this limit, the
peak-height distribution is found from Fig. 6 to be Gaussian, a
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result that agrees with that of Whitehouse and Archard [13].
For other values of A, @ may be obtained from equation (95);
profile and surface statistics may then be obtained with the
techniques described in this paper.

6 ‘cum:lilsions

To reiterate the main theoretical theme of this paper, the
extremal statistics of a random surface must be distinguished
from the statistics of a profile of the surface. All the information
necessary for the analysis of random, isotropic, Gaussian surfaces
is contained in the power spectral density of a profile in an arbi-
trary direction. The analytical techniques for obtaining the
statistics of the surface are given in Section 3. A simple tech-
nique for obtaining the parameters necessary for this analysis is
described in Section 4. )

In general, it is found that the profile, if interpreted simplis-
tically, indicates a lower probability for high summits, a smaller
summit curvature, and a smaller mean gradient than actually
exist on the surface. The implications of this distortion for
problems involving contact of rough surfaces is obvious.

It may be noted that the theory outlined in this paper is, in
principle, easy to extend to nonisotropic Gaussian surfaces.
The development of the theory remains valid up to equation
(27); beyond this point, it is necessary to do without the use of
equations (16), which imply isotropy. Longuet-Higgins gives
the density of summits for nonisotropic Gaussian surfaces [2],
and discusses in detail surface slopes and gradients [10]. How-
ever, results are not available for probability densities for summit
heights and mean curvatures.

An interesting fact about nonisotropic surfaces is that one -
needs nine constants to proceed with an analysis analogous to
Ours: Mg, Mao, Moz, My1, Mis, Ma1, Maz, Mao, and moes. However,
the properties of the surface we are concerned with are inde-
pendent of the orientation of the z-y axes on the surface. Thus -
only certain invariant combinations of the moments m;; appear
in the probability distributions of the surface statistics. Lon-
guet-Higgins [10] has shown that for ( 4+ j) < 4, there are only
seven such invariants. These are mg, (Mmoz + M), (MagMez —
mu)z, (mso + 2ma + m04), (Magmoes — 4mizms + 3m222), (m4o +
Mag)(Mez + mos) — (mar + mu3)? and Mme(Magmes — Mhi3) — Mar-
(maimos — MigMas) + Maa(Martis — M),

For a profile along any direction 6, three equations may be
written for the profile moments 7o, Mz, and myg in terms of the
m;j, as in equation (14). For three profiles, nine such equations
may be written, but three of these (irivolving myg) are linearly
dependent, leaving seven independent equations from which the
seven invariants may be obtained.

A final observation that may be made is that all the higher-
order surface statistics of interest depend only on the parameters
Mg, Ms, and ms, obtained from a single profile for Gaussian, iso-
tropic surfaces, and from three nonparallel profiles for Gaussian,
nonisotropic surfaces. Therefore, it seems worthwhile to in-
vestigate the possibility of defining the surface finish of solids by
these three parameters. The suggestion is particularly attractive

because of the ease with which the three parameters may be ob- .

tained from a profile, as described in Section 4.
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APPENDIX 1

The expressions I, . . . Is appearing in equation (63) are as

follows:

I = (—2—%) " exp (—14E*1)(1 + erf B),

(A1)

I = 1/Cilexp (—CiE*2) + B exp (—/sE*)v/T(L + erf B)],
‘ : (A2)
I, = v2/Cy*"[B exp (—Ci*2) + +/T exp (—1/26*?)
X (1 + exf B)(B* + 1/2)l, (A3)
I = 2/C2[(1 + B?) exp (—CiE*?) + /T exp (—1/2£*2)
X (L4 et BB+ 36/2), (A4)

Le— Y I)'”
T+ 1) \2

X exp { —[af*]/[2(a — D]} (1 +erfv) (A5)

1 :
= — *
Cl+1[exp( Cig*?) + v .

X exp { —[af*]/[2(a — DI} VAL + erf v)l, (A6)

C; being defined in equation (45), and B and v being defined in
equation (51).

I

Acknowledgments

I would like to express my thanks to my oolleague; Dr. Raya
Stern, for her help during the course of this work.

Reprinted from the July 1971
Journal of Lubrication Technology

Journal of Lubrication Technology

JuLy 1971 / 401



